Ventilator Maintenance Blog Cover Photo

How Is A Mechanical Ventilator Maintained And Cleaned: Latest Practical Information and Guidelines

When talking about life-saving equipment that has helped thousands of lives, mechanical ventilators are one of them. Even scientists and most medical providers often refer to them as a channel of breath for life as they are devices built to enhance respiration. In fact, some of these breath power equipment also help with the intake of drugs. However, despite the supportive nature of ventilators, like a sturdy bridge, they can also be hazardous if faulty. So to prevent your device from breaking down you need to always carry out routine ventilator cleaning procedures. 

Therefore, what are the basic guidelines for maintaining ventilators effectively? Hey! The answer to your question is right here at your fingertip. Keep scrolling, as this blog provides you with some of the latest, integral information and tips you need to know about efficient ventilator maintenance. (1,2)

Ventilator Maintenance

Cleaning Protocols for Ensuring Ventilator Hygiene

You will agree with me that every procedure and guideline requires an ideal protocol. Therefore, before taking any steps to clean your ventilators, certain pre-cleaning procedures should be carried out. Some of these hygienic ventilator cleaning customs are:

Using Sanitized Hands to Clean

First and foremost, before you begin any operation, it’s very important to wash your hands thoroughly under running water. Doing this with the application of antiseptic soap can also help reduce the transmission of germs. Also, this hand sanitation process is applicable while operating many devices and finally when you are done with the whole process for ventilator maintenance

Inspect Device Regularly

Regardless of not being put to use, it’s essential for you to always carry out routine checks on your device. With this regular examination, some damages or wear and tear complications can be determined and noted. In addition, during ventilation cleaning you may encounter some things out of normal. It’s advisable to note them and find a solution as soon as possible.  

Routine Disinfection

Another protocol for ventilation maintenance is adherence to the sanitation and disinfection guidelines provided by the manufacturer. The reason for this is to avoid production complications. Although, oftentimes, these disinfection guidelines usually involve the cleaning of surfaces like knobs, touchscreens, buttons, tubes, and lots more. However, if you aren’t provided with the basic cleaning directions, you can also make use of the 10 steps for routine MV maintenance.

Keep the Ventilator in a Safe Place

Finally, according to most manufacturer’s guidelines, medical devices like MV must always be kept in a cool dry place after use. A good storage system is also Therefore, after using your ventilator, you need to keep it in an appropriate place, so as to prevent and maintain its integrity.  

Ventilator Maintenance photo 2

Routine Maintenance Procedures for Mechanical Ventilators 

If you want to channel cleanliness into other areas like medical ventilator maintenance, some regular step-by-step procedures are highly required. Therefore, are you wondering about what these maintenance procedures are? Below are the almighty 10 steps for routine MV maintenance.

  • Step 1: To start with, you need to first of all examine the respiratory device physically for any obvious damages. 
  • Step 2: Your next procedure to prevent the spread of germs is to sanitize the device and evaluate the performance and functionality of your ventilator.
  • Step 3: Another important ventilator maintenance step is to thoroughly clean all oxygen filters, collection vials, and power fans. Note: Be very careful when handling these parts.
  • Step 4: You must also check the expiratory valve properly and ensure there are no leakages.
  • Step 5: Additionally, you need to ensure that the tubes aren’t accumulating moisture in order to prevent inconvenient breathing support.
  • Step 6: After the tube assessment, the next step you need to take is to carefully examine your oxygen supply alongside its flow rate. This is very crucial as the life of your patient depends on it.
  • Step 7: Don’t forget to check and see if every alarm is functioning.
  • Step 8: Lest you forget the importance of oxygen sensor calibration. Therefore, always put into practice to adjust your oxygen flow to standard.
  • Step 9: Furthermore, familiarize yourself with the ventilators’ backup emergency system and safety features. 
  • Step 10: Finally, before you round up, always ensure the battery is completely charged and take note of the next preventive check date.
Essential Safety Precautions During Ventilator Maintenance

Essential Safety Precautions During Ventilator Maintenance

On most occasions, carelessness is one of the major elements that often cause the breaking down of people’s devices. However, in some cases, some individuals often injure themselves or damage equipment because they don’t know the essential precautions that must be carried out. Therefore, if you are among this set of people, below are some crucial safety measures for ventilator maintenance. 

  1. The mechanical service of a ventilator must be carried out by a professional.
  2. Ensure to always switch off and unplug devices from the electric source.
  3. Always put on protective materials like gloves, face shields, etc, before the commencement of the procedure. 
  4. Make sure you follow your manufacturer’s guidelines to clean and maintain your ventilator.
  5. Another key component is setting your ventilator to its required standard and rechecking before the O2 supply for confirmation. 
  6. In addition, get a backup system available in case of any unforeseen circumstances.
Training and Education for Ventilator Maintenance Personnel

Training and Education for Ventilator Maintenance Personnel

In addition to the competence of medical professionals, the use of potent medical technology and devices is very important. They are equipment that provides high-quality treatment and healthcare supplies. These powerful systems, like mechanical ventilation, always require the assistance of professional operators. Because, without an operating expert, it may be helpless at times. Therefore, getting the best from your ventilator requires comprehensive ventilator maintenance training and educational sessions. If you are looking for a reliable source to know the in-depth features of your ventilator? Biosys Biomedicals gart you covered.

Troubleshooting Common Issues in Mechanical Ventilation

Several problems may occur to a respiratory support system due to wear and tear or any other condition. However, one of the most common and very dangerous issues is inadequate ventilation. If you notice that your MV is delivering less oxygen than it should, you must disconnect the ventilator and listen for a hissing sound from the ET tube. If hissing is present, connect an Ambu bag and assess lung compliance. After that, you can check the tube position and tweak the ventilator settings. However, if you are unable to solve the problem, you can reach out to a ventilator maintenance expert for assistance. 

Complications with Standards and Regulations in Ventilator Maintenance (8)

As indicated above, there are protocols for doing things when it comes to the aspect of ventilator cleaning. Most of these protocols are integral standards or regulations from the manufacturer and even experts. However, a deviation from this lay down instructions may lead to various problems such as a faulty ventilation system, going against regulatory bodies, risks to patient safety, reduced device integrity, etc. 

Future Trends and Innovations in Mechanical Ventilator Maintenance (10)

With the various advancements in science and health, some potential improvements are said to emerge in ventilator maintenance. Some of these proposed future directions, such as predictive maintenance and real-time monitoring, are already coming to the limelight. Also, other predicted trends and innovations like AR tech assistance, virtual reality training programs, and automatic routine maintenance systems are yet to come. So worry less, as a supportive AI system for ventilator cleaning is on its way.

Mechanical Ventilator Maintenance

Ventilator Care Support from Biosys Biomedical

Having the latest information about ventilator maintenance is like unlocking the secret to effective respiratory support. Even though these maintenance guidelines involve some basic step-by-step cleaning procedures, their protocols are standards that must be followed. However, to perfectly repair and troubleshoot common issues that may occur a comprehensive training and education program is very important. 

Therefore, if you want to prevent complications caused by regulation glitches, a reliable source such as Biosys Biomedical is readily available to connect you with future trends in ventilator cleaning. So, for effective breathing support maintenance, get in touch with us right now!

References

Modes of Mechanical Ventilation | mechanical ventilation modes

The Most Common Modes of Mechanical Ventilation

Mechanical ventilation is the process of using an external device (machine) to aid gaseous movement in and out of the lung. It serves as a type of life-saving device that facilitates breathing. Also, it’s widely used as an artificial breathing support in surgical cases, extremely ill situations, or when an individual is incapable of breathing on their own.  Various modes of mechanical ventilation play a great role in respiratory support, patient stabilization, and provision of pressure to prevent the alveoli from collapsing. Continue reading, as this article provides you with diverse mechanical ventilation modes and some of the most common modes of air circulation.

Modes of Mechanical Ventilation

Pressure Controlled Ventilation (PCV)

Pressure-controlled ventilation is a special kind of assisted respiration whereby a patient’s inspiratory pressure is predetermined. This mechanical ventilation mode provides an amount of aeration that depends on the compliance of the lungs and the resistance of the alveoli. It is an airflow system where the maximum airway force is constant and the total ventilation fluctuates. 

PCV is one of the most convincing pressure-limited ventilation (PLV) that is used regularly in the initial stages of newborn care. It is a technique recommended by different centers for preventing lobar emphysema. Although PCV reduces the risk of barotrauma, it could be challenging to provide a sufficient tidal volume (VT) when used in patients with ARDS. Also, an improper setting of this ventilator can lead to hypoxia and respiratory depression. 

Modes of Mechanical Ventilation

Volume Controlled Ventilation (VCV)

The modes of mechanical ventilation that involves a preset tidal volume to be provided in a specific amount of time is volume-controlled ventilation. It is usually more simple and comprehensible for most medical practitioners new to assisted air circulation. In this case, total ventilation is always set, the volume of breath supplied is constant, but the inspiratory pressure is unstable. 

Most of the time, VCV is commonly used in anesthesia, either in the assisted control (AC) mode or continuous mandatory ventilation (CMV). Due to the increase in peak pressure (PIP) with steady and accurate breathing volume, it usually causes uneven gaseous distribution and volutrauma. 

Pressure Support Ventilation (PSV)

A special mode of positive-pressure mechanical ventilation that requires patient initiation of each breath is known as pressure support ventilation. This kind of aided respiration can be administered either through the use of intubation (invasive) or with a mask (non-invasive) ventilatory pattern. It’s known as the most pleasant aided airflow with a useful system that delivers the benefits of the two types of ventilator patterns. 

PSV involves setting maximum driving pressure which usually indicates the ventilator flow rate. Sometimes, the patient’s pulmonary compliance, airway resistance, PIP, and breathing efforts frequently affect this flow rate. There is no minimum minute ventilation and the tidal volume provided is influenced by the flow and rate of breathing. Due to a volatile VT, it may also make the lung distend excessively. 

Pressure-Limited Time-Cycled Ventilation

Another type of PLV (similar to a pressure-controlled ventilator) that was previously used in neonates is the time-cycled PLV. This mechanical ventilation mode makes use of a predetermined peak pressure and a specified volume of gas within an extended period. While breathing in, this triggered ventilator provides a steady flow of air to the patient. 

Previous reports about the use of pressure-limited time-cycled ventilation have shown that lungs are usually susceptible to atelectrauma and barotrauma conditions. In addition, it has been observed that one of the primary factors influencing ventilator-associated lung injury (VALI) is Total ventilation (VT).

mechanical ventilation modes

Synchronized Intermittent Mandatory Ventilation (SIMV)

This is a unique mode of mechanical ventilation that provides a fixed tidal volume at a predefined frequency. In most cases, synchronized intermittent mandatory air circulation always permits patients to voluntarily breathe on their own. SIMV produces a mandatory breath that is delivered at the same moment the patient starts initiating their breath (spontaneous breath). In addition, positive end-expository pressure (PEEP) can also be administered using this synchronized IMV method. 

SIMV is mostly required by people with COPD, neuromuscular disorder, or ARDS and is used alongside pressure support ventilation. In some instances where SIMV is improperly used, there may be an inability to initiate spontaneous breath, fluctuations in intrathoracic force, or severe respiratory failure. This technique of ventilation is risky for hyperventilation, consumes much time, and can cause infection, barotrauma, or cardiac arrhythmias.

Modes of Mechanical Ventilation

High Flow Nasal Cannula (HFNC)

A high-flow nasal cannula is an oxygen therapy commonly called a heated, humidified, high-flow nasal cannula (HHFNC). It entails the delivery of a flexible blend of warmed, humid, and oxygen-rich air at a variable pace that surpasses spontaneous pulmonary flow. Whenever this aeration is used to provide oxygen, the flow is significantly greater than that with conventional nasal cannulas. 

In addition, HFNC enhances the functional residual capacity, and accurate distribution of oxygen. This mechanical ventilation mode often has an outcome of improved breathing efficiency due to continuous high oxygen flow that often washes out the anatomical dead space. 

Self Adjustable Ventilation (SAV)

Self Adjustable Ventilation is a special ventilator that makes use of detectors to constantly alter the airflow in response to changes in air properties. With the help of this technique, indoor comfort, improved air exchange systems, and environmental sustainability are guaranteed. This often allows great flexibility in ventilator parameters and also blends soothingly with a wide range of conditions.

References

1.https://my.clevelandclinic.org/health/treatments/15368-mechanical-ventilation

2.https://www.sciencedirect.com/topics/medicine-and-dentistry/pressure-controlled-ventilation

3. https://ecampusontario.pressbooks.pub/mechanicalventilators/chapter/volume-control-ventilation/

4.https://ecampusontario.pressbooks.pub/mechanicalventilators/chapter/volume-control-ventilation/

5.https://pubmed.ncbi.nlm.nih.gov/31536312/#:~:text=

6.https://journals.lww.com/jcma/fulltext/2019/10000/volume_targeted_versus_pressure_limited.14.aspx#:~:text=

7. https://www.icliniq.com/articles/respiratory-health/synchronized-intermittent-mandatory-ventilation

8.https://www.uptodate.com/contents/high-flow-nasal-cannula-oxygen-therapy-in-children

kapak

NEWS – Turkish factory Biosys exports respiratory devices to 41 countries

In Batman Organize Sanayi Bolgesi (OSB), respiratory devices manufactured in a factory are exported to 41 countries.

During the COVID-19 pandemic, Biosys, a domestic producer of respiratory devices, collaborated with Arcelik, ASELSAN, and Baykar under the guidance of the Ministry of Health and the Ministry of Industry and Technology.

Both, in collaboration, inaugurated a factory in Batman OSB on March 6 of this year, with the presence of the Minister of Treasury and Finance Mehmet Simsek and Mehmet the Minister of Industry and Technology Fatih Kacir.